目录

thread

目录
import threading
import time

简单的创建

def run(n):
    print("task", n)
    time.sleep(1)
    print('2s')
    time.sleep(1)
    print('1s')
    time.sleep(1)
    print('0s')
    time.sleep(1)

if __name__ == '__main__':
    t1 = threading.Thread(target=run, args=("t1",))
    t2 = threading.Thread(target=run, args=("t2",))
    t1.start()
    t2.start()

通过类创建

class MyThread(threading.Thread):
    def __init__(self, n):
        super(MyThread, self).__init__()  # 重构run函数必须要写
        self.n = n

    def run(self):
        print("task", self.n)
        time.sleep(1)
        print('2s')
        time.sleep(1)
        print('1s')
        time.sleep(1)
        print('0s')
        time.sleep(1)

if __name__ == "__main__":
    t1 = MyThread("t1")
    t2 = MyThread("t2")
    t1.start()
    t2.start()

对比没有join()和join()的区别

def run(n):
    print("task", n)
    time.sleep(1)       #此时子线程停1s
    print('3')
    time.sleep(1)
    print('2')
    time.sleep(1)
    print('1')

if __name__ == '__main__':
    t = threading.Thread(target=run, args=("t1",))
    t.setDaemon(True)   #把子进程设置为守护线程,必须在start()之前设置
    t.start()
    print("end")
def run(n):
    print("task", n)
    time.sleep(1)       #此时子线程停1s
    print('3')
    time.sleep(1)
    print('2')
    time.sleep(1)
    print('1')

if __name__ == '__main__':
    t = threading.Thread(target=run, args=("t1",))
    t.setDaemon(True)   #把子进程设置为守护线程,必须在start()之前设置
    t.start()
    t.join() # 设置主线程等待子线程结束
    print("end")

锁的应用

def run(n, semaphore):
    semaphore.acquire()   #加锁
    time.sleep(1)
    print("run the thread:%s\n" % n)
    semaphore.release()     #释放

if __name__ == '__main__':
    num = 0
    semaphore = threading.BoundedSemaphore(5)  # 最多允许5个线程同时运行
    for i in range(22):
        t = threading.Thread(target=run, args=("t-%s" % i, semaphore))
        t.start()
    while threading.active_count() != 1:
        pass  # print threading.active_count()
    else:
        print('--')

事件类

event = threading.Event()


def lighter():
    count = 0
    event.set()     #初始值为绿灯
    while True:
        if 5 < count <=10 :
            event.clear()  # 红灯,清除标志位
            print("\33[41;1mred light is on...\033[0m")
        elif count > 10:
            event.set()  # 绿灯,设置标志位
            count = 0
        else:
            print("\33[42;1mgreen light is on...\033[0m")

        time.sleep(1)
        count += 1

def car(name):
    while True:
        if event.is_set():      #判断是否设置了标志位(绿灯)
            print("[%s] running..."%name)
            time.sleep(1)
        else:
            print("[%s] sees red light,waiting..."%name)
            event.wait()#如果变为绿灯
            print("[%s] green light is on,start going..."%name)

light = threading.Thread(target=lighter,)
light.start()

car = threading.Thread(target=car,args=("MINI",))
car.start()

queue队列

import threading
import queue,time

q=queue.Queue(maxsize=10)
def Producer(name):
    count=1
    while True:
        q.put("骨头 %s"%count)
        print("{}生产了骨头".format(name),count)
        count+=1
        time.sleep(1)      
def Consumer(name):
    while True:
        print("[%s] 取到  [%s] 并且吃了它。。。"%(name,q.get()))
        time.sleep(1)
p=threading.Thread(target=Producer,args=('wlb',))
c=threading.Thread(target=Consumer,args=("dog",))
c1=threading.Thread(target=Consumer,args=("cat",))

p.start()
c.start()
c1.start()

互斥锁

由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁,即同一时刻允许一个线程执行操作。线程锁用于锁定资源,你可以定义多个锁, 像下面的代码, 当你需要独占某一资源时,任何一个锁都可以锁这个资源,就好比你用不同的锁都可以把相同的一个门锁住是一个道理。

由于线程之间是进行随机调度,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期,我们也称此为“线程不安全”。

为了方式上面情况的发生,就出现了互斥锁(Lock)

from threading import Thread,Lock
import os,time
def work():
    global n
    lock.acquire()
    temp=n
    time.sleep(0.1)
    n=temp-1
    lock.release()
if __name__ == '__main__':
    lock=Lock()
    n=100
    l=[]
    for i in range(100):
        p=Thread(target=work)
        l.append(p)
        p.start()
    for p in l:
        p.join()

信号量

互斥锁同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。

import threading
import time

def run(n, semaphore):
    semaphore.acquire()   #加锁
    time.sleep(1)
    print("run the thread:%s\n" % n)
    semaphore.release()     #释放

if __name__ == '__main__':
    num = 0
    semaphore = threading.BoundedSemaphore(5)  # 最多允许5个线程同时运行
    for i in range(22):
        t = threading.Thread(target=run, args=("t-%s" % i, semaphore))
        t.start()
    while threading.active_count() != 1:
        pass  # print threading.active_count()
    else:
        print('--')

GIL(Global Interpreter Lock)全局解释器锁

在非python环境中,单核情况下,同时只能有一个任务执行。多核时可以支持多个线程同时执行。但是在python中,无论有多少核,同时只能执行一个线程。究其原因,这就是由于GIL的存在导致的。

GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定。某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。GIL只在cpython中才有,因为cpython调用的是c语言的原生线程,所以他不能直接操作cpu,只能利用GIL保证同一时间只能有一个线程拿到数据。而在pypy和jpython中是没有GIL的。

Python多线程的工作过程: python在使用多线程的时候,调用的是c语言的原生线程。

  1. 拿到公共数据
  2. 申请gil
  3. python解释器调用os原生线程
  4. os操作cpu执行运算
  5. 当该线程执行时间到后,无论运算是否已经执行完,gil都被要求释放 进而由其他进程重复上面的过程
  6. 等其他进程执行完后,又会切换到之前的线程(从他记录的上下文继续执行),整个过程是每个线程执行自己的运算,当执行时间到就进行切换(context switch)。