SVM_sklearn
目录
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
= pd.read_csv("./datasets/Social_Network_Ads.csv")
data = data.iloc[:, [2, 3]].values
X = data.iloc[:, 4].values y
from sklearn.model_selection import train_test_split
= train_test_split(X, y, test_size = 0.25, random_state = 0) X_train, X_test, y_train, y_test
from sklearn.preprocessing import StandardScaler
= StandardScaler()
sc = sc.fit_transform(X_train)
X_train = sc.fit_transform(X_test) X_test
from sklearn.svm import SVC
= SVC(kernel = 'linear', random_state = 0)
classifier classifier.fit(X_train, y_train)
SVC(kernel='linear', random_state=0)
= classifier.predict(X_test) y_pred
classifier.score(X_test,y_test)
0.88
from sklearn.metrics import confusion_matrix
= confusion_matrix(y_test, y_pred) cm
from matplotlib.colors import ListedColormap
= X_train, y_train
X_set, y_set = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
X1, X2 = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
np.arange(start
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),= 0.75, cmap = ListedColormap(('red', 'green')))
alpha min(), X1.max())
plt.xlim(X1.min(), X2.max())
plt.ylim(X2.for i, j in enumerate(np.unique(y_set)):
== j, 0], X_set[y_set == j, 1],
plt.scatter(X_set[y_set = ListedColormap(('red', 'green'))(i), label = j)
c 'SVM (Training set)')
plt.title('Age')
plt.xlabel('Estimated Salary')
plt.ylabel(
plt.legend() plt.show()
from matplotlib.colors import ListedColormap
= X_test, y_test
X_set, y_set = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
X1, X2 = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
np.arange(start
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),= 0.75, cmap = ListedColormap(('red', 'green')))
alpha min(), X1.max())
plt.xlim(X1.min(), X2.max())
plt.ylim(X2.for i, j in enumerate(np.unique(y_set)):
== j, 0], X_set[y_set == j, 1],
plt.scatter(X_set[y_set = ListedColormap(('red', 'green'))(i), label = j)
c 'SVM (Test set)')
plt.title('Age')
plt.xlabel('Estimated Salary')
plt.ylabel(
plt.legend() plt.show()