参考:https://cuijiahua.com/blog/2017/11/ml_11_regression_1.html 什么是回归? 回归的
计数质数 https://leetcode-cn.com/problems/count-primes/ 一开始直接暴力,隐约感觉会超时,果然不出我所料 class Solution: def countPrimes(self, n: int) -> int: counts = 0 for i in range(n): if self.isprime(i): counts += 1 return counts def isprime(self,n): from itertools import count if n <=1: return False for i in count(2): if i* i > n:
感知机算法 感知机印象中没有系统学习过但是是一个很简单的算法,最近看了一下李航老师的统计学习方法,发现感知机的思想和svm十分类似,并且比sv
目的:手动将抽取出的样本堆叠起来,构造成batch Trainer函数有一个参数data_collator,其值也为一个函数,用于从一个lis
导入包 import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import plotly.graph_objects as go 导入数据 data = pd.read_csv("./datasets/Social_Network_Ads.csv") X = data.iloc[:,[2,3]].values Y = data.iloc[:,4].values # scatter = go.Scatter(x=X[:,0],y=X[:,1],mode='markers',marker={'color':Y}) # fig = go.Figure(scatter) # fig.show() X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.25,random_state=0) 标准化 from sklearn.preprocessing import StandardScaler sca = StandardScaler() X_train = sca.fit_transform(X_train) X_test = sca.transform(X_test) 训练模型 from sklearn.neighbors import KNeighborsClassifier model
最大数 题目: https://leetcode-cn.com/problems/largest-number/ 思路: 一开始直接暴力搜索,把所有的情况都列举然后比较,结果超时了,最后利用了自定义排序的方法 代码: class Solution: def largestNumber(self, nums: List[int]) -> str: class Comapre(str): def __lt__(self,other): return int(self+other)
image.png image.png
词干提取(Stemming) 可以使用NLTK库,也可以使用专门的词干提取库 from stemming.porter2 import stem
检查平衡性 题目: https://leetcode-cn.com/problems/check-balance-lcci/ 思路: 算深度,然后作差是否大于1 代码: # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def isBalanced(self, root: TreeNode) -> bool: if self.maxdepth(root) < 1: return True if abs(self.maxdepth(root.left)
语言模型 语言模型是一个很大的主题,很多nlp的任务都是基于语言模型进行的,因此理解语言模型是很重要的。 语言模型简单说就是 计算一个句子在语言中