Logistic Regression
目录
导入包
import numpy as np
import pandas as pd
导入数据
= pd.read_csv("./datasets/Social_Network_Ads.csv")
data data.head()
User ID | Gender | Age | EstimatedSalary | Purchased | |
---|---|---|---|---|---|
0 | 15624510 | Male | 19 | 19000 | 0 |
1 | 15810944 | Male | 35 | 20000 | 0 |
2 | 15668575 | Female | 26 | 43000 | 0 |
3 | 15603246 | Female | 27 | 57000 | 0 |
4 | 15804002 | Male | 19 | 76000 | 0 |
= data.iloc[:,[2,3]].values
X = data.iloc[:,4].values Y
交叉验证
from sklearn.model_selection import train_test_split
= train_test_split(X,Y,train_size=1/4,random_state=0) X_train,X_test,Y_train,Y_test
标准化
from sklearn.preprocessing import StandardScaler
= StandardScaler()
standardscaler = standardscaler.fit_transform(X_train)
X_train = standardscaler.transform(X_test) X_test
训练模型
from sklearn.linear_model import LogisticRegression
= LogisticRegression()
model model.fit(X_train,Y_train)
LogisticRegression()
模型得分
model.score(X_test,Y_test)
0.7933333333333333