目录

Logistic Regression

目录

导入包

import numpy as np
import pandas as pd

导入数据

data = pd.read_csv("./datasets/Social_Network_Ads.csv")
data.head()
User ID Gender Age EstimatedSalary Purchased
0 15624510 Male 19 19000 0
1 15810944 Male 35 20000 0
2 15668575 Female 26 43000 0
3 15603246 Female 27 57000 0
4 15804002 Male 19 76000 0
X = data.iloc[:,[2,3]].values
Y = data.iloc[:,4].values

交叉验证

from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,train_size=1/4,random_state=0)

标准化

from sklearn.preprocessing import StandardScaler
standardscaler = StandardScaler()
X_train = standardscaler.fit_transform(X_train)
X_test = standardscaler.transform(X_test)

训练模型

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train,Y_train)
LogisticRegression()

模型得分

model.score(X_test,Y_test)
0.7933333333333333