Decision Tree
目录
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
= pd.read_csv('./datasets/Social_Network_Ads.csv')
dataset = dataset.iloc[:, [2, 3]].values
X = dataset.iloc[:, 4].values y
from sklearn.model_selection import train_test_split
= train_test_split(X, y, test_size = 0.25, random_state = 0) X_train, X_test, y_train, y_test
from sklearn.preprocessing import StandardScaler
= StandardScaler()
sc = sc.fit_transform(X_train)
X_train = sc.transform(X_test) X_test
from sklearn.tree import DecisionTreeClassifier
= DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier classifier.fit(X_train, y_train)
DecisionTreeClassifier(criterion='entropy', random_state=0)
classifier.score(X_test,y_test)
0.91