目录

简单的线性回归

目录

导入包

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

导入数据

data = pd.read_csv("./datasets/studentscores.csv")
data.head()
Hours Scores
0 2.5 21
1 5.1 47
2 3.2 27
3 8.5 75
4 3.5 30

数据处理

X = data.iloc[:,:1].values
Y = data.iloc[:,1].values
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=1/4,random_state=0)

训练模型

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train,Y_train)

预测

Y_pred = regressor.predict(X_test)

画图

plt.scatter(X_train,Y_train,color='red')
plt.plot(X_train,regressor.predict(X_train),color='blue')
plt.scatter(X_test , Y_test, color = 'red')
plt.plot(X_test , regressor.predict(X_test), color ='blue')