简单的线性回归
目录
导入包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
导入数据
= pd.read_csv("./datasets/studentscores.csv")
data data.head()
Hours | Scores | |
---|---|---|
0 | 2.5 | 21 |
1 | 5.1 | 47 |
2 | 3.2 | 27 |
3 | 8.5 | 75 |
4 | 3.5 | 30 |
数据处理
= data.iloc[:,:1].values
X = data.iloc[:,1].values
Y from sklearn.model_selection import train_test_split
= train_test_split(X,Y,test_size=1/4,random_state=0) X_train,X_test,Y_train,Y_test
训练模型
from sklearn.linear_model import LinearRegression
= LinearRegression()
regressor = regressor.fit(X_train,Y_train) regressor
预测
= regressor.predict(X_test) Y_pred
画图
='red')
plt.scatter(X_train,Y_train,color='blue') plt.plot(X_train,regressor.predict(X_train),color
= 'red')
plt.scatter(X_test , Y_test, color ='blue') plt.plot(X_test , regressor.predict(X_test), color