牛顿插值
目录
牛顿插值
差商
定义:设 \(f(x)\) 在互异节点\(x_i\)处的函数值为\(f_i, i=0,1,\dots,n\),称\(f[x_i,x_j]=\frac{f_i-f_j}{x_i-x_j}\)为\(f(x)\)关于节点\(x_i,x_j\)的一阶差商,\(f[x_i,x_j,x_k]=\frac{f[x_i,x_j]-f[x_j,x_k]}{x_i-x_k}\)为\(f(x)\)关于\(x_i,x_j,x_k\)的二阶差商,以此类推k阶差商:
\[ f[x_0,x_1,\dots ,x_k-1,x_k] = \frac{f[x_0,x_1,\dots ,x_{k-1}]-f[x_1,\dots ,x_k]}{x_0-x_k} \]
牛顿基本插值
\[ \begin{aligned} &N_n(x) = a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)+\dots +a_n(x-x_0)(x-x_1)\dots(x-x_{n-1})\\\\ &= f_0 + \sum_{k=1}^{k-1}f[x_0,x_1,\dots,x_k]\omega_k(x) \\\\ &其中\omega_k(x)=\prod_{j=0}^{k-1}(x-x_j) \end{aligned} \]
差分
优缺点
- 优点:计算简单
- 缺点:和拉格朗日插值方法相同,插值曲线在节点处有尖点,不光滑,节点处不可导
代码
# 牛顿插值法
import numpy as np
import matplotlib.pyplot as plt
#递归求差商
def get_diff_quo(xi, fi):
if len(xi) > 2 and len(fi) > 2:
return (get_diff_quo(xi[:len(xi)-1], fi[:len(fi)-1]) - get_diff_quo(xi[1:len(xi)], fi[1:len(fi)])) / float(xi[0] - xi[-1])
return (fi[0]-fi[1]) / float(xi[0]-xi[1])
#求w,使用闭包函数
def get_w(i, xi):
def wi(x):
= 1.0
result for j in range(i):
*= (x - xi[j])
result return result
return wi
#做插值
def get_Newton(xi, fi):
def Newton(x):
= fi[0]
result for i in range(2, len(xi)):
+= (get_diff_quo(xi[:i], fi[:i]) * get_w(i-1, xi)(x))
result return result
return Newton
#已知结点
= [i for i in range(-50, 50, 10)]
xn = [i**2 for i in xn]
fn
#插值函数
= get_Newton(xn, fn)
Nx
#测试用例
= [i for i in range(-50, 51)]
tmp_x = [Nx(i) for i in tmp_x]
tmp_y
#作图
'r*')
plt.plot(xn, fn, 'b-')
plt.plot(tmp_x, tmp_y, 'Newton Interpolation')
plt.title('x')
plt.xlabel('y')
plt.ylabel( plt.show()