交叉验证
目录
import numpy as np
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
= datasets.load_iris()
data = data.data
X = data.target Y
= []
k_scores for k in range(1,31):
= KNeighborsClassifier(n_neighbors=k)
model #scores = cross_val_score(model,X,Y,cv=10,scoring="accuracy") # for classification
= -cross_val_score(model,X,Y,cv=10,scoring="neg_mean_squared_error") # for regression
loss
k_scores.append(loss.mean())range(1,31),k_scores)
plt.plot( plt.show()